A tabular sarsa-based stock market agent
Author:
Affiliation:
1. Federal University of Minas Gerais State, Belo Horizonte, Brazil
2. Federal Center of Technology Education, Belo Horizonte, Brazil
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3383455.3422559
Reference33 articles.
1. A league championship algorithm equipped with network structure and backward Q-learning for extracting stock trading rules
2. Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies
3. Robert W Colby and Thomas A Meyers. 1988. The encyclopedia of technical market indicators. Dow Jones-Irwin Homewood IL "". Robert W Colby and Thomas A Meyers. 1988. The encyclopedia of technical market indicators . Dow Jones-Irwin Homewood IL "".
4. Marco Corazza and Andrea Sangalli. 2015. Q-Learning and SARSA: a comparison between two intelligent stochastic control approaches for financial trading. University Ca'Foscari of Venice Dept. of Economics Research Paper Series No 15 (2015). Marco Corazza and Andrea Sangalli. 2015. Q-Learning and SARSA: a comparison between two intelligent stochastic control approaches for financial trading. University Ca'Foscari of Venice Dept. of Economics Research Paper Series No 15 (2015).
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel deep reinforcement learning framework with BiLSTM-Attention networks for algorithmic trading;Expert Systems with Applications;2024-04
2. MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading;Lecture Notes in Computer Science;2024
3. Margin Trader: A Reinforcement Learning Framework for Portfolio Management with Margin and Constraints;4th ACM International Conference on AI in Finance;2023-11-25
4. Context-adaptive intelligent agents behaviors: multivariate LSTM-based decision making on the cryptocurrency market;International Journal of Data Science and Analytics;2023-08-19
5. Mitigating Risk in Machine Learning-Based Portfolio Management: A Deep Reinforcement Learning Approach;2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE);2023-07-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3