Fast and efficient searches for effective optimization-phase sequences

Author:

Kulkarni Prasad A.1,Hines Stephen R.1,Whalley David B.1,Hiser Jason D.2,Davidson Jack W.2,Jones Douglas L.3

Affiliation:

1. Florida State University, Tallahassee, FL

2. University of Virginia, Charlottesville, VA

3. University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

It has long been known that a fixed ordering of optimization phases will not produce the best code for every application. One approach for addressing this phase-ordering problem is to use an evolutionary algorithm to search for a specific sequence of phases for each module or function. While such searches have been shown to produce more efficient code, the approach can be extremely slow because the application is compiled and possibly executed to evaluate each sequence's effectiveness. Consequently, evolutionary or iterative compilation schemes have been promoted for compilation systems targeting embedded applications where meeting strict constraints on execution time, code size, and power consumption is paramount and longer compilation times may be tolerated in the final stage of development, when an application is compiled one last time and embedded in a product. Unfortunately, even for small embedded applications, the search process can take many hours or even days making the approach less attractive to developers. In this paper, we describe two complementary general approaches for achieving faster searches for effective optimization sequences when using a genetic algorithm. The first approach reduces the search time by avoiding unnecessary executions of the application when possible. Results indicate search time reductions of 62%, on average, often reducing searches from hours to minutes. The second approach modifies the search so fewer generations are required to achieve the same results. Measurements show this approach decreases the average number of required generations by 59%. These improvements have the potential for making evolutionary compilation a viable choice for tuning embedded applications.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference26 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3