An Arabic Probabilistic Parser Based on a Property Grammar

Author:

Bensalem Raja1ORCID,Haddar Kais2ORCID,Blache Philippe3ORCID

Affiliation:

1. Faculty of Economic Sciences and Management of Sfax, Computer Sciences Department, University of Sfax, Tunisia

2. Faculty of Sciences of Sfax, Computer Sciences Department, Tunisia

3. Laboratoire Parole et Langage (LPL), Aix en Provence, Provence-Alpes-Côte d'Azur, France

Abstract

The specificities of Arabic parsing, such as agglutination, vocalization, and the relatively order-free words in Arabic sentences, remain major issues to consider. To promote its robustness, such parseing should define different types of constraints. Property Grammar (PG) formalism verifies the satisfiability of the constraints directly on the units of the structure, thanks to its properties (or relations). In this context, we propose to build a probabilistic parser with syntactic properties, using a PG, and we measure the production rules in terms of different implicit information and in particular the syntactic properties. We experimented with our parser on the treebank ATB, using the parsing algorithm CYK, and we obtained encouraging results. Our method is also automatic for implementation of most property types. Its generalization for other languages or corpus domains (using treebanks) could be a good perspective. Its combination with pre-trained models of BERT may also make our parser faster.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference58 articles.

1. Parsing Arabic nominal sentences using context free grammar and fundamental rules of classical grammar;Ababou N.;Int. J. Intell. Syst. Appl,2017

2. A machine learning system for distinguishing nominal and verbal Arabic sentences;Abdelrazaq D.;Int. Arab J. Info. Technol.,2018

3. I. Adebara. 2019. Womb grammars: A constraint solving model for learning the grammar of Yoruba. In Proceedings of European Language Resources Association (ELRA’19). 169–172.

4. S. Al-Ghamdi, H. Al-Khalifa, and A. Al-Salman. 2021. A dependency treebank for classical Arabic poetry. In Proceedings of the 6th International Conference on Dependency Linguistics (SyntaxFest’21). Association for Computational Linguistics, 1–9.

5. Fine-Tuning BERT-Based Pre-Trained Models for Arabic Dependency Parsing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3