1. M Esmaeili, H Rabbani, AM Dehnavi and A Dehghani. 2012. Automatic detection of exudates and optic disk in retinal images using curvelet transform. IET J. Img Proc. 6, 7 (Oct. 2012), 1005--1013. DOI= 10.1049/iet-ipr.2011.0333.
2. Key facts -- Diabetes. Retrieved Oct 30, 2018, from the WHO website: https://www.who.int/news-room/fact-sheets/detail/diabetes.
3. PMDS Pallawala, W. Hsu, ML Lee and SS Goh. 2005. Automated micro-aneurysm segmentation and detection using generalized eigenvectors. In Proceedings of the 7th IEEE Workshop on Applications of Computer Vision (Breckenridge, CO, USA, January 5-7, 2005). IEEE. WACV, 05, 322--327. DOI= 10.1109/ACVMOT.2005.26.
4. E. Grisan and A. Ruggeri. 2007. Segmentation of candidate dark lesions in fundus images based on local thresholding and pixel density. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Lyon, France, August 22-26, 2007). IEEE. EMBS, 07, 6735--6738. DOI= 10.1109/IEMBS.2007.4353907.
5. S. Pradhan, S. Balasubramanian and V. Chandrasekaran. 2008. An Integrated Approach using Automatic Seed Generation and Hybrid Classification for the Detection of Red Lesions in Digital Fundus Images. In Proceedings pf the IEEE 8th International Conference on Computer Information Technology Workshops (Sydney, QLD, Australia, July 8-11, 2008) IEEE. CIT, 08, 462--467. DOI= 10.1109/CIT.2008.Workshops.35.