Dremel

Author:

Zhao Chenxingyu1,Chugh Tapan1,Min Jaehong1,Liu Ming2,Krishnamurthy Arvind1

Affiliation:

1. University of Washington, Seattle, WA, USA

2. University of Wisconsin-Madison, Madison, WI, USA

Abstract

LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, configuring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) right configurations are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting configurations to workload and hardware, and evaluating quickly. In this work, we present a system, Dremel, to adaptively and quickly configure RocksDB with strategies based on the Multi-Armed Bandit model. To handle the massive parameter space, we propose using fused features, which encode domain-specific knowledge, to work as a compact and powerful representation for configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling to speed up identifying the best configuration. Dremel not only achieves up to ×2.61 higher IOPS and 57% less latency than default configurations but also achieves up to 63% improvements over prior works on 18 different settings with the same or less time budget.

Funder

Cisco Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Reference70 articles.

1. High-Dimensional Bayesian Optimization with Multi-Task Learning for RocksDB

2. Apache. 2021. Flink . https://flink.apache.org/. Apache. 2021. Flink . https://flink.apache.org/.

3. Apache. 2022. Cassandra . https://cassandra.apache.org/. Apache. 2022. Cassandra . https://cassandra.apache.org/.

4. Jean-Yves Audibert Sébastien Bubeck and Rémi Munos. 2010. Best arm identification in multi-armed bandits.. In COLT. Citeseer 41--53. Jean-Yves Audibert Sébastien Bubeck and Rémi Munos. 2010. Best arm identification in multi-armed bandits.. In COLT. Citeseer 41--53.

5. Using confidence bounds for exploitation-exploration trade-offs;Auer Peter;Journal of Machine Learning Research,2002

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can Modern LLMs Tune and Configure LSM-based Key-Value Stores?;Proceedings of the 16th ACM Workshop on Hot Topics in Storage and File Systems;2024-07-08

2. VDTuner: Automated Performance Tuning for Vector Data Management Systems;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Lifting the Fog of Uncertainties;Proceedings of the 2023 ACM Symposium on Cloud Computing;2023-10-30

4. Chroma: Learning and Using Network Contexts to Reinforce Performance Improving Configurations;Proceedings of the 29th Annual International Conference on Mobile Computing and Networking;2023-10-02

5. CoTuner: A Hierarchical Learning Framework for Coordinately Optimizing Resource Partitioning and Parameter Tuning;Proceedings of the 52nd International Conference on Parallel Processing;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3