A Hardware Framework for Yield and Reliability Enhancement in Chip Multiprocessors

Author:

Pan Abhisek1,Rodrigues Rance2,Kundu Sandip3

Affiliation:

1. Purdue University, West Lafayette, IN

2. University of Massachusetts, Amherst, Beaverton OR

3. University of Massachusetts, Amherst, MA

Abstract

Device reliability and manufacturability have emerged as dominant concerns in end-of-road CMOS devices. An increasing number of hardware failures are attributed to manufacturability or reliability problems. Maintaining an acceptable manufacturing yield for chips containing tens of billions of transistors with wide variations in device parameters has been identified as a great challenge. Additionally, today’s nanometer scale devices suffer from accelerated aging effects because of the extreme operating temperature and electric fields they are subjected to. Unless addressed in design, aging-related defects can significantly reduce the lifetime of a product. In this article, we investigate a micro-architectural scheme for improving yield and reliability of homogeneous chip multiprocessors (CMPs). The proposed solution involves a hardware framework that enables us to utilize the redundancies inherent in a multicore system to keep the system operational in the face of partial failures. A micro-architectural modification allows a faulty core in a CMP to use another core’s resources to service any instruction that the former cannot execute correctly by itself. This service improves yield and reliability but may cause loss of performance. The target platform for quantitative evaluation of performance under degradation is a dual-core and a quad-core chip multiprocessor with one or more cores sustaining partial failure. Simulation studies indicate that when a large, high-latency, and sparingly used unit such as a floating-point unit fails in a core, correct execution may be sustained through outsourcing with at most a 16% impact on performance for a floating-point intensive application. For applications with moderate floating-point load, the degradation is insignificant. The performance impact may be mitigated even further by judicious selection of the cores to commandeer depending on the current load on each of the candidate cores. The area overhead is also negligible due to resource reuse.

Funder

Semiconductor Research Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defect Tolerance in VLSI Circuits;Fault-Tolerant Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3