1. Manifold Gaussian Processes for regression
2. David Duvenaud , James Lloyd , Roger Grosse , Joshua Tenenbaum , and Ghahramani Zoubin . 2013 . Structure discovery in nonparametric regression through compositional kernel search . In International Conference on Machine Learning. PMLR, 1166–1174 . David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Ghahramani Zoubin. 2013. Structure discovery in nonparametric regression through compositional kernel search. In International Conference on Machine Learning. PMLR, 1166–1174.
3. Muluken Regas Eressa , Hakim Badis , Laurent George , and Dorian Grosso . 2022 . Sparse Variational Gaussian Process with Dynamic Kernel for Electricity Demand Forecasting. In 2022 IEEE 7th International Energy Conference (ENERGYCON). IEEE, 1–6. Muluken Regas Eressa, Hakim Badis, Laurent George, and Dorian Grosso. 2022. Sparse Variational Gaussian Process with Dynamic Kernel for Electricity Demand Forecasting. In 2022 IEEE 7th International Energy Conference (ENERGYCON). IEEE, 1–6.
4. Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series
5. Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models;Hachino Tomohiro;International Journal of Electrical and Computer Engineering,2014