Disk Scrubbing Versus Intradisk Redundancy for RAID Storage Systems

Author:

Iliadis Ilias1,Haas Robert1,Hu Xiao-Yu1,Eleftheriou Evangelos1

Affiliation:

1. IBM Zurich Research Laboratory

Abstract

Two schemes proposed to cope with unrecoverable or latent media errors and enhance the reliability of RAID systems are examined. The first scheme is the established, widely used, disk scrubbing scheme, which operates by periodically accessing disk drives to detect media-related unrecoverable errors. These errors are subsequently corrected by rebuilding the sectors affected. The second scheme is the recently proposed intradisk redundancy scheme, which uses a further level of redundancy inside each disk, in addition to the RAID redundancy across multiple disks. A new model is developed to evaluate the extent to which disk scrubbing reduces the unrecoverable sector errors. The probability of encountering unrecoverable sector errors is derived analytically under very general conditions regarding the characteristics of the read/write process of uniformly distributed random workloads and for a broad spectrum of disk scrubbing schemes, which includes the deterministic and random scrubbing schemes. We show that the deterministic scrubbing scheme is the most efficient one. We also derive closed-form expressions for the percentage of unrecoverable sector errors that the scrubbing scheme detects and corrects, the throughput performance, and the minimum scrubbing period achievable under operation with random, uniformly distributed I/O requests. Our results demonstrate that the reliability improvement due to disk scrubbing depends on the scrubbing frequency and the load of the system, and, for heavy-write workloads, may not reach the reliability level achieved by a simple interleaved parity-check (IPC)-based intradisk redundancy scheme, which is insensitive to the load. In fact, for small unrecoverable sector error probabilities, the IPC-based intradisk redundancy scheme achieves essentially the same reliability as that of a system operating without unrecoverable sector errors. For heavy loads, the reliability achieved by the scrubbing scheme can be orders of magnitude less than that of the intradisk redundancy scheme. Finally, the I/O and throughput performances are evaluated by means of analysis and event-driven simulation.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Adjustment of Disk Redundancy and Scrubbing Strategy With Reinforcement Learning;IEEE Transactions on Industrial Informatics;2024-08

2. Reliability Stripe Coagulation in Two Failure Tolerant Storage Arrays;2023 International Conference on Communication System, Computing and IT Applications (CSCITA);2023-03-31

3. Reliability Evaluation of Erasure-coded Storage Systems with Latent Errors;ACM Transactions on Storage;2023-01-11

4. Bibliography;Storage Systems;2022

5. Saving power in disks, flash memories, and servers;Storage Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3