Adversarial Robustness of Neural Networks From the Perspective of Lipschitz Calculus: A Survey

Author:

Zühlke Monty-Maximilian1,Kudenko Daniel1

Affiliation:

1. L3S Research Center, Hannover, Germany

Abstract

We survey the adversarial robustness of neural networks from the perspective of Lipschitz calculus in a unifying fashion by expressing models, attacks and safety guarantees, that is, a notion of measurable trustworthiness, in a mathematical language. After an intuitive motivation, we discuss algorithms to estimate a network’s Lipschitz constant, Lipschitz regularisation techniques, robustness guarantees, and the connection between a model’s Lipschitz constant and its generalisation capabilities. Afterwards, we present a new vantage point regarding minimal Lipschitz extensions, corroborate its value empirically and discuss possible research directions. Finally, we add a toolbox containing mathematical prerequisites for navigating the field (Appendix).

Publisher

Association for Computing Machinery (ACM)

Reference133 articles.

1. On the differentiability of Lipschitz functions with respect to measures in the Euclidean space

2. Moustafa Alzantot, Yash Sharma, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang. 2018. Generating Natural Language Adversarial Examples. (04 2018).

3. Cem Anil James Lucas and Roger B. Grosse. 2019. Sorting out Lipschitz function approximation. In ICML.

4. A Survey on Adversarial Deep Learning Robustness in Medical Image Analysis

5. Alexandre Araujo Benjamin Négrevergne Yann Chevaleyre and Jamal Atif. 2021. On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory. In AAAI.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3