Cold-start Point-of-interest Recommendation through Crowdsourcing

Author:

Mazumdar Pramit1ORCID,Patra Bidyut Kr.2ORCID,Babu Korra Sathya2ORCID

Affiliation:

1. Università degli Studi Roma TRE, Rome, Italy

2. National Institute of Technology Rourkela, Odisha, India

Abstract

Recommender system is a popular tool that aims to provide personalized suggestions to user about items, products, services, and so on. Recommender system has effectively been used in online social networks, especially the location-based social networks for providing suggestions for interesting places known as POIs (points-of-interest). Popular recommender systems explore historical data to learn users’ preferences and, subsequently, they recommend locations to an active user. This strategy faces a major problem when a new POI or business evolves in a city. New business has no historical user experience data. Thus, a recommender system fails to gather enough knowledge about the new businesses, resulting in ignoring them during recommendations. This scenario is popularly known as a cold-start POI problem. Users never get recommendations of the new businesses in a city even though they can be relevant to a user. Also, from a business owner’s perspective, such a recommendation strategy does not help its reachability among users. Therefore, it is important for a recommender system to remain updated with new businesses in a city and ensure that all relevant POIs are recommended to a user irrespective of their lifetime. A POI recommendation approach is proposed in this work that can effectively handle the new businesses, or the cold-start POI problem, in a city. We crowdsource descriptions of cold-start POIs from various online social networks. The reviews of users are exploited here to learn the inherent features at the existing POIs and the new crowdsourced POIs. Finally, the proposed approach recommends top- K POIs consisting of the existing and new POIs. We perform experiments on the real-world Yelp dataset, which is one of the largest available data resources containing details on a wide range of businesses, users, and reviews. The proposed approach is compared with four existing POI recommendation approaches. The obtained results show that our approach outperforms others in handling cold-start POIs.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3