Fed-Haul: A Federated Learning Dual Band Point Multi-Point Backhaul Requirements in 5G Evolution and Beyond

Author:

Chehri Abdellah1ORCID,Chaibi Hasna1ORCID,Mettiti Abderrahmane1ORCID,Saadane Rachid1ORCID,Jeon Gwanggil1ORCID

Affiliation:

1. NISS23, Morocco

Publisher

ACM

Reference14 articles.

1. Liu L. , Zhang J. , Song S. , Letaief K. B. , Edge-assisted hierarchical federated learning with non-iid data, arXiv preprint arXiv:1905.06641 , 2019 . Liu L., Zhang J., Song S., Letaief K. B., Edge-assisted hierarchical federated learning with non-iid data, arXiv preprint arXiv:1905.06641, 2019.

2. Model pruning enables efficient federated learning on edge devices;Jiang Y.;IEEE Transactions on Neural Networks and Learning Systems,2022

3. Budgeted online selection of candidate IoT clients to participate in federated learning, IEEE Internet of Things Journal;Mohammed I.;VOL.,2020

4. CMFL: Mitigating Communication Overhead for Federated Learning

5. Millimeter wave for 5G mobile fronthaul and backhaul

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on federal learning privacy protection based on secure multi-party computing;Proceedings of the 2024 3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3