Throughput-Optimized FPGA Accelerator for Deep Convolutional Neural Networks

Author:

Liu Zhiqiang1,Dou Yong1,Jiang Jingfei1,Xu Jinwei1,Li Shijie1,Zhou Yongmei1,Xu Yingnan1

Affiliation:

1. National University of Defense Technology, Changsha, Hunan, China

Abstract

Deep convolutional neural networks (CNNs) have gained great success in various computer vision applications. State-of-the-art CNN models for large-scale applications are computation intensive and memory expensive and, hence, are mainly processed on high-performance processors like server CPUs and GPUs. However, there is an increasing demand of high-accuracy or real-time object detection tasks in large-scale clusters or embedded systems, which requires energy-efficient accelerators because of the green computation requirement or the limited battery restriction. Due to the advantages of energy efficiency and reconfigurability, Field-Programmable Gate Arrays (FPGAs) have been widely explored as CNN accelerators. In this article, we present an in-depth analysis of computation complexity and the memory footprint of each CNN layer type. Then a scalable parallel framework is proposed that exploits four levels of parallelism in hardware acceleration. We further put forward a systematic design space exploration methodology to search for the optimal solution that maximizes accelerator throughput under the FPGA constraints such as on-chip memory, computational resources, external memory bandwidth, and clock frequency. Finally, we demonstrate the methodology by optimizing three representative CNNs (LeNet, AlexNet, and VGG-S) on a Xilinx VC709 board. The average performance of the three accelerators is 424.7, 445.6, and 473.4GOP/s under 100MHz working frequency, which outperforms the CPU and previous work significantly.

Funder

National Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3