Efficient Syndrome Decoder for Heavy Hexagonal QECC via Machine Learning

Author:

Bhoumik Debasmita1,Majumdar Ritajit2,Madan Dhiraj2,Vinayagamurthy Dhinakaran2,Raghunathan Shesha2,Sur-Kolay Susmita1

Affiliation:

1. Advanced Computing & Microelectronics Unit, Indian Statistical Institute

2. IBM Quantum, IBM India Research Lab

Abstract

Error syndromes for heavy hexagonal code and other topological codes such as surface code have typically been decoded by using Minimum Weight Perfect Matching (MWPM) based methods. Recent advances have shown that topological codes can be efficiently decoded by deploying machine learning (ML) techniques, in particular with neural networks. In this work, we first propose an ML based decoder for heavy hexagonal code and establish its efficiency in terms of the values of threshold and pseudo-threshold, for various noise models. We show that the proposed ML based decoding method achieves ∼ 5 × higher values of threshold than that for MWPM. Next, exploiting the property of subsystem codes, we define gauge equivalence for heavy hexagonal code, by which two distinct errors can belong to the same error class. A linear search based method is proposed for determining the equivalent error classes. This provides a quadratic reduction in the number of error classes to be considered for both bit flip and phase flip errors, and thus a further improvement of \(\sim 14\% \) in the threshold over the basic ML decoder. Lastly, a novel technique based on rank to determine the equivalent error classes is presented, which is empirically faster than the one based on linear search.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference36 articles.

1. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

2. A fast quantum mechanical algorithm for database search

3. F. Arute , K. Arya , R. Babbush , D. Bacon , J.  C. Bardin , R. Barends , R. Biswas , S. Boixo , F.  GSL Brandao , D.  A. Buell , et al . 2019 . Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505–510. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. GSL Brandao, D. A. Buell, et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505–510.

4. Quantum speedup of Monte Carlo methods

5. Scheme for reducing decoherence in quantum computer memory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3