Affiliation:
1. Computer Science & Engr. Dept. (C-014), Univ. California at San Diego, La Jolla, CA
Abstract
AIR represents a connectionist approach to the task of information retrieval. The system uses relevance feedback from its users to change its representation of authors, index terms and documents so that, over time, AIR improves at its task. The result is a representation of the
consensual
meaning of keywords and documents shared by some group of users. The central focus goal of this paper is to use our experience with AIR to highlight those characteristics of connectionist representations that make them particularly appropriate for IR applications. We argue that this associative representation is a natural generalization of traditional IR techniques, and that connectionist learning techniques are effective in this setting.
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Management Information Systems
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献