On Building Design Guidelines for An Interactive Machine Learning Sandbox Application
Author:
Affiliation:
1. De La Salle University, Manila, Philippines
Publisher
ACM Press
Reference27 articles.
1. Saleema Amershi. 2011. Designing for effective enduser interaction with machine learning. Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Software and Technology - UIST 11 Adjunct: 47--50. http://doi.org/10.1145/2046396.2046416
2. Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, et al. Guidelines for Human-AI Interaction - microsoft.com. Microsoft. Retrieved 2019 from https://www.microsoft.com/en-us/research/uploads/prod/2019/01/Guidelines-for-Human-AI-Interaction-camera-ready.pdf
3. Francisco Bernardo, Michael Zbyszyński, Rebecca Fiebrink, and Mick Grierson. 2017. Interactive Machine Learning for End-User Innovation. 2017 AAAI Spring Symposium Series.
4. Michelle Patrick Cook. 2006. Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education 90, 6: 1073--1091. http://doi.org/10.1002/sce.20164
5. Jordan Aiko Deja, Patrick Arceo, Darren Goldwin David, Patrick Lawrence Gan, and Ryan Christopher Roque. 2018. MyoSL: A Framework for Measuring Usability of Two-Arm Gestural Electromyography for Sign Language. Universal Access in Human-Computer Interaction. Methods, Technologies, and Users Lecture Notes in Computer Science: 146--159. http://doi.org/10.1007/978-3-319-92049-8_11
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Retzzles: Engaging Users towards Retention through Touchscreen Puzzles;Companion Proceedings of the 2022 Conference on Interactive Surfaces and Spaces;2022-11-20
2. Marcelle: Composing Interactive Machine Learning Workflows and Interfaces;The 34th Annual ACM Symposium on User Interface Software and Technology;2021-10-10
3. A Review of Recent Deep Learning Approaches in Human-Centered Machine Learning;Sensors;2021-04-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3