Nonlinear Compliant Modes for Large-deformation Analysis of Flexible Structures

Author:

Duenser Simon1ORCID,Thomaszewski Bernhard1ORCID,Poranne Roi2ORCID,Coros Stelian1ORCID

Affiliation:

1. ETH Zurich, Zurich, Switzerland

2. University of Haifa, Israel and ETH Zurich, Zurich, Switzerland

Abstract

Many flexible structures are characterized by a small number of compliant modes , i.e., large-deformation paths that can be traversed with little mechanical effort, whereas resistance to other deformations is much stiffer. Predicting the compliant modes for a given flexible structure, however, is challenging. While linear eigenmodes capture the small-deformation behavior, they quickly divert into states of unrealistically high energy for larger displacements. Moreover, they are inherently unable to predict nonlinear phenomena such as buckling, stiffening, multistability, and contact. To address this limitation, we propose Nonlinear Compliant Modes —a physically principled extension of linear eigenmodes for large-deformation analysis. Instead of constraining the entire structure to deform along a given eigenmode, our method only prescribes the projection of the system’s state onto the linear mode while all other degrees of freedom follow through energy minimization. We evaluate the potential of our method on a diverse set of flexible structures, ranging from compliant mechanisms to topology-optimized joints and structured materials. As validated through experiments on physical prototypes, our method correctly predicts a broad range of nonlinear effects that linear eigenanalysis fails to capture.

Funder

Swiss National Science Foundation through the National Centre of Competence in Digital Fabrication

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3