Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach

Author:

Li Haonan1ORCID,Hao Yu1ORCID,Zhai Yizhuo1ORCID,Qian Zhiyun1ORCID

Affiliation:

1. University of California, Riverside, Riverside, USA

Abstract

While static analysis is instrumental in uncovering software bugs, its precision in analyzing large and intricate codebases remains challenging. The emerging prowess of Large Language Models (LLMs) offers a promising avenue to address these complexities. In this paper, we present LLift, a pioneering framework that synergizes static analysis and LLMs, with a spotlight on identifying use-before-initialization (UBI) bugs within the Linux kernel. Drawing from our insights into variable usage conventions in Linux, we enhance path analysis using post-constraint guidance. This approach, combined with our methodically crafted procedures, empowers LLift to adeptly handle the challenges of bug-specific modeling, extensive codebases, and the unpredictable nature of LLMs. Our real-world evaluations identified four previously undiscovered UBI bugs in the mainstream Linux kernel, which the Linux community has acknowledged. This study reaffirms the potential of marrying static analysis with LLMs, setting a compelling direction for future research in this area.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference54 articles.

1. Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl T. Barr. 2024. Automatic Semantic Augmentation of Language Model Prompts (for Code Summarization). In 2024 IEEE/ACM 45th International Conference on Software Engineering (ICSE).

2. Anthropic (2023). 2023. Claude 2. https://www.anthropic.com/index/claude-2

3. Jiuhai Chen Lichang Chen Heng Huang and Tianyi Zhou. 2023. When do you need Chain-of-Thought Prompting for ChatGPT? arxiv:2304.03262 arXiv:2304.03262 [cs]

4. Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, and Greg Brockman. 2021. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

5. Xinyun Chen Maxwell Lin Nathanael Schärli and Denny Zhou. 2023. Teaching Large Language Models to Self-Debug. arxiv:2304.05128

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large language models in source code static analysis;2024 Ivannikov Memorial Workshop (IVMEM);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3