Affiliation:
1. The Academic College of Tel-Aviv Yaffo
2. Complutense University of Madrid
Abstract
In this article, we study the complexity of the problems: given a loop, described by linear constraints over a finite set of variables, is there a linear or lexicographical-linear ranking function for this loop? While existence of such functions implies termination, these problems are not equivalent to termination. When the variables range over the rationals (or reals), it is known that both problems are PTIME decidable. However, when they range over the integers, whether for single-path or multipath loops, the complexity has not yet been determined. We show that both problems are coNP-complete. However, we point out some special cases of importance of PTIME complexity. We also present complete algorithms for synthesizing linear and lexicographical-linear ranking functions, both for the general case and the special PTIME cases. Moreover, in the rational setting, our algorithm for synthesizing lexicographical-linear ranking functions extends existing ones, because our definition for such functions is more general, yet it has PTIME complexity.
Funder
Ministerio de Educación, Cultura y Deporte
Seventh Framework Programme
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献