Approximately Socially-Optimal Decentralized Coalition Formation with Application to P2P Energy Sharing

Author:

Chau Sid Chi-Kin1,Elbassioni Khaled2,Zhou Yue1

Affiliation:

1. Australian National University, Australia

2. Khalifa University, UAE

Abstract

The paradigm of P2P (peer-to-peer) economy has emerged in diverse areas. P2P energy sharing is a new form of P2P economy in the energy sector, which allows users to establish longer-term sharing arrangements of their local energy resources (e.g., rooftop PVs, home batteries) with joint optimized energy management. In such a P2P setting, a coalition of users is formed for sharing resources in a decentralized manner by self-interested users based on their individual preferences. A likely outcome of decentralized coalition formation will be a stable coalition structure, where no group of users could cooperatively opt out to form another coalition that induces higher preferences to all its members. Remarkably, there exist a number of fair cost-sharing mechanisms (e.g., equal-split, proportional-split, egalitarian and Nash bargaining solutions of bargaining games) that model practical cost-sharing applications with desirable properties, such as the existence of a stable coalition structure with a small strong price-of-anarchy (SPoA) to approximate the social optimum. In this paper, we provide general results of decentralized coalition formation: (1) We establish a logarithmic lower bound on SPoA, and hence, show several previously known fair cost-sharing mechanisms are the best practical mechanisms with minimal SPoA. (2) We show that the SPoA of egalitarian and Nash bargaining cost-sharing mechanisms to match the lower bound. (3) We derive the SPoA of a mix of different cost-sharing mechanisms. (4) We present a decentralized algorithm to form a stable coalition structure. (5) Finally, we apply our general results to P2P energy sharing and present an empirical study of decentralized coalition formation in a real-world project. We study the empirical SPoA, which is observed within 95% of the social optimal cost with coalitions of 2 and 3 users, via fair cost-sharing mechanisms.

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. On the Value of Coordination in Network Design

2. The Price of Stability for Network Design with Fair Cost Allocation

3. Haris Aziz and Florian Brandl . 2012 . Existence of Stability in Hedonic Coalition Formation Games . In Proc. of AAMAS. Haris Aziz and Florian Brandl. 2012. Existence of Stability in Hedonic Coalition Formation Games. In Proc. of AAMAS.

4. The Stability of Hedonic Coalition Structures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3