Analysis and implementation of software rejuvenation in cluster systems

Author:

Vaidyanathan Kalyanaraman1,Harper Richard E.2,Hunter Steven W.3,Trivedi Kishor S.1

Affiliation:

1. Dept. of ECE, Duke University, Durham, NC

2. IBM Research, Raleigh, NC

3. IBM Corporation, RTP, NC

Abstract

Several recent studies have reported the phenomenon of "software aging", one in which the state of a software system degrades with time. This may eventually lead to performance degradation of the software or crash/hang failure or both. "Software rejuvenation" is a pro-active technique aimed to prevent unexpected or unplanned outages due to aging. The basic idea is to stop the running software, clean its internal state and restart it. In this paper, we discuss software rejuvenation as applied to cluster systems. This is both an innovative and an efficient way to improve cluster system availability and productivity. Using Stochastic Reward Nets (SRNs), we model and analyze cluster systems which employ software rejuvenation. For our proposed time-based rejuvenation policy, we determine the optimal rejuvenation interval based on system availability and cost. We also introduce a new rejuvenation policy based on prediction and show that it can dramatically increase system availability and reduce downtime cost. These models are very general and can capture a multitude of cluster system characteristics, failure behavior and performability measures, which we are just beginning to explore. We then briefly describe an implementation of a software rejuvenation system that performs periodic and predictive rejuvenation, and show some empirical data from systems that exhibit aging

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic survey on fault-tolerant solutions for distributed data analytics: Taxonomy, comparison, and future directions;Computer Science Review;2024-08

2. Software Aging Analysis in a Testing Framework;2023 IEEE 34th International Symposium on Software Reliability Engineering Workshops (ISSREW);2023-10-09

3. Rethinking Software Fault Tolerance;IEEE Transactions on Reliability;2023

4. Analysis of Software Aging in a Blockchain Platform;2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW);2022-10

5. A Markov Regenerative Model of Software Rejuvenation Beyond the Enabling Restriction;2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3