SoK: Modeling Explainability in Security Analytics for Interpretability, Trustworthiness, and Usability

Author:

Bhusal Dipkamal1ORCID,Shin Rosalyn2ORCID,Shewale Ajay Ashok1ORCID,Veerabhadran Monish Kumar Manikya1ORCID,Clifford Michael3ORCID,Rampazzi Sara4ORCID,Rastogi Nidhi1ORCID

Affiliation:

1. Department of Software Engineering, Rochester Institute of Technology, USA

2. Independent Researcher, Republic of Korea

3. Toyota InfoTech Labs, Toyota Motor North America, USA

4. Department of Computer and Information Science and Engineering, University of Florida, USA

Publisher

ACM

Reference97 articles.

1. Deep Learning with Differential Privacy

2. Julius Adebayo , Justin Gilmer , Michael Muelly , Ian Goodfellow , Moritz Hardt , and Been Kim . 2018. Sanity checks for saliency maps. NeurIPS ( 2018 ). Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. 2018. Sanity checks for saliency maps. NeurIPS (2018).

3. Neda AfzaliSeresht . 2022. Explainable Intelligence for Comprehensive Interpretation of Cybersecurity Data in Incident Management. Ph. D. Dissertation . Victoria University . Neda AfzaliSeresht. 2022. Explainable Intelligence for Comprehensive Interpretation of Cybersecurity Data in Incident Management. Ph. D. Dissertation. Victoria University.

4. Chirag Agarwal , Nari Johnson , Martin Pawelczyk , Satyapriya Krishna , Eshika Saxena , Marinka Zitnik , and Himabindu Lakkaraju . 2022 . Rethinking Stability for Attribution-based Explanations. In ICLR 2022 Workshop Privacy, Accountability, Interpretability, Robustness, Reasoning on Structured Data. Chirag Agarwal, Nari Johnson, Martin Pawelczyk, Satyapriya Krishna, Eshika Saxena, Marinka Zitnik, and Himabindu Lakkaraju. 2022. Rethinking Stability for Attribution-based Explanations. In ICLR 2022 Workshop Privacy, Accountability, Interpretability, Robustness, Reasoning on Structured Data.

5. Bushra  A Alahmadi , Louise Axon , and Ivan Martinovic . 2022 . 99% False Positives: A Qualitative Study of SOC Analysts’ Perspectives on Security Alarms . In Proceedings of the 31st USENIX Security , Boston, MA, USA. 10–12. Bushra A Alahmadi, Louise Axon, and Ivan Martinovic. 2022. 99% False Positives: A Qualitative Study of SOC Analysts’ Perspectives on Security Alarms. In Proceedings of the 31st USENIX Security, Boston, MA, USA. 10–12.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Position: The Explainability Paradox - Challenges for XAI in Malware Detection and Analysis;2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW);2024-07-08

2. PASA: Attack Agnostic Unsupervised Adversarial Detection Using Prediction & Attribution Sensitivity Analysis;2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P);2024-07-08

3. Achieving Counterfactual Explanation for Sequence Anomaly Detection;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3