Affiliation:
1. Indian Institute of Technology Guwahati, Assam, India
Abstract
Network bootstrapping is one of the initial tasks executed in any wireless network such as Industrial Internet of Things (IIoT). Fast formation of IIoT network helps in resource conservation and efficient data collection. Our probabilistic analysis reveals that the performance of 6TiSCH based IIoT network formation degrades with time because of the following reasons: (i) IETF 6TiSCH Minimal Configuration (6TiSCH-MC) standard considered that beacon frame has the highest priority over all other control packets, (ii) 6TiSCH-MC provides minimal routing information during network formation, and (iii) sometimes, joined node can not transmit control packets due to high congestion in shared slots. To deal with these problems, this article proposes two schemes—opportunistic priority alternation and rate control (OPR) and opportunistic channel access (OCA). OPR dynamically adjusts the priority of control packets and provides sufficient routing information during network bootstrapping, whereas OCA allows the nodes having urgent packet to transmit it in less time. Along with the theoretical analysis of the proposed schemes, we also provide comparison-based simulation and real testbed experiment results to validate the proposed schemes together. The received results show significant performance improvements in terms of joining time and energy consumption.
Publisher
Association for Computing Machinery (ACM)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献