A Framework for Exploiting Local Information to Enhance Density Estimation of Data Streams

Author:

Boedihardjo Arnold P.1,Lu Chang-Tien2,Wang Bingsheng2

Affiliation:

1. U.S. Army Corps of Engineers, Alexandria, VA

2. Virginia Tech, Falls Church, VA

Abstract

The Probability Density Function (PDF) is the fundamental data model for a variety of stream mining algorithms. Existing works apply the standard nonparametric Kernel Density Estimator (KDE) to approximate the PDF of data streams. As a result, the stream-based KDEs cannot accurately capture complex local density features. In this article, we propose the use of Local Region (LRs) to model local density information in univariate data streams. In-depth theoretical analyses are presented to justify the effectiveness of the LR-based KDE. Based on the analyses, we develop the General Local rEgion AlgorithM (GLEAM) to enhance the estimation quality of structurally complex univariate distributions for existing stream-based KDEs. A set of algorithmic optimizations is designed to improve the query throughput of GLEAM and to achieve its linear order computation. Additionally, a comprehensive suite of experiments was conducted to test the effectiveness and efficiency of GLEAM.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference48 articles.

1. A framework for diagnosing changes in evolving data streams

2. C. Aggarwal and P. S. Yu. 2007. A survey of synopsis construction in data streams. In Data Streams: Models and Algorithms C. Aggarwal Ed. Springer Science and Business Media New York 169--202. C. Aggarwal and P. S. Yu. 2007. A survey of synopsis construction in data streams. In Data Streams: Models and Algorithms C. Aggarwal Ed. Springer Science and Business Media New York 169--202.

3. A. Asuncion and D. J. Newman. 2007. UCI machine learning repository. University of California School of Information and Computer Science Irvine CA. Available at http://www.ics.uci.edu/∼ mlearn/MLRepository.html. A. Asuncion and D. J. Newman. 2007. UCI machine learning repository. University of California School of Information and Computer Science Irvine CA. Available at http://www.ics.uci.edu/∼ mlearn/MLRepository.html.

4. Models and issues in data stream systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3