Co-Located Human–Human Interaction Analysis Using Nonverbal Cues: A Survey

Author:

Beyan Cigdem1ORCID,Vinciarelli Alessandro2ORCID,Bue Alessio Del3ORCID

Affiliation:

1. Dept. of Management, Information and Production Engineering, University of Bergamo, Italy

2. School of Computing Science, University of Glasgow, UK

3. Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Italy

Abstract

Automated co-located human–human interaction analysis has been addressed by the use of nonverbal communication as measurable evidence of social and psychological phenomena. We survey the computing studies (since 2010) detecting phenomena related to social traits (e.g., leadership, dominance, and personality traits), social roles/relations, and interaction dynamics (e.g., group cohesion, engagement, and rapport). Our target is to identify the nonverbal cues and computational methodologies resulting in effective performance. This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings (free-standing conversations, meetings, dyads, and crowds). We also present a comprehensive summary of the related datasets and outline future research directions, which are regarding the implementation of artificial intelligence, dataset curation, and privacy-preserving interaction analysis. Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3–4 persons equipped with microphones and cameras, respectively; multimodal features are prominently performing better; deep learning architectures showed improved performance in overall, but there exist many phenomena whose detection has never been implemented through deep models. We also identified several limitations such as the lack of scalable benchmarks, annotation reliability tests, cross-dataset experiments, and explainability analysis.

Funder

UKRI

EPSRC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diffusion-Based Unsupervised Pre-training for Automated Recognition of Vitality Forms;Proceedings of the 2024 International Conference on Advanced Visual Interfaces;2024-06-03

2. Survey of Automated Methods for Nonverbal Behavior Analysis in Parent-Child Interactions;2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG);2024-05-27

3. Exploring Multimodal Nonverbal Functional Features for Predicting the Subjective Impressions of Interlocutors;IEEE Access;2024

4. Embracing Contact: Detecting Parent-Infant Interactions;INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3