Incremental hierarchical memory size estimation for steering of loop transformations

Author:

Hu Q.1,Kjeldsberg P. G.1,Vandecappelle A.2,Palkovic M.2,Catthoor F.2

Affiliation:

1. Norwegian University of Science and Technology, Trondheim, Norway

2. IMEC, Leuven, Belgium

Abstract

Modern embedded multimedia and telecommunications systems need to store and access huge amounts of data. This becomes a critical factor for the overall energy consumption, area, and performance of the systems. Loop transformations are essential to improve the data access locality and regularity in order to optimally design or utilize a memory hierarchy. However, due to abstract high-level cost functions, current loop transformation steering techniques do not take the memory platform sufficiently into account. They usually also result in only one final transformation solution. On the other hand, the loop transformation search space for real-life applications is huge, especially if the memory platform is still not fully fixed. Use of existing loop transformation techniques will therefore typically lead to suboptimal end-products. It is critical to find all interesting loop transformation instances. This can only be achieved by performing an evaluation of the effect of later design stages at the early loop transformation stage. This article presents a fast incremental hierarchical memory-size requirement estimation technique. It estimates the influence of any given sequence of loop transformation instances on the mapping of application data onto a hierarchical memory platform. As the exact memory platform instantiation is often not yet defined at this high-level design stage, a platform-independent estimation is introduced with a Pareto curve output for each loop transformation instance. Comparison among the Pareto curves helps the designer, or a steering tool, to find all interesting loop transformation instances that might later lead to low-power data mapping for any of the many possible memory hierarchy instances. Initially, the source code is used as input for estimation. However, performing the estimation repeatedly from the source code is too slow for large search space exploration. An incremental approach, based on local updating of the previous result, is therefore used to handle sequences of different loop transformations. Experiments show that the initial approach takes a few seconds, which is two orders of magnitude faster than state-of-the-art solutions but still too costly to be performed interactively many times. The incremental approach typically takes just a few milliseconds, which is another two orders of magnitude faster than the initial approach. This huge speedup allows us for the first time to handle real-life industrial-size applications and get realistic feedback during loop transformation exploration.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3