GraphINC: Graph Pattern Mining at Network Speed

Author:

Hussein Rana1ORCID,Lerner Alberto1ORCID,Ryser Andre1ORCID,Bürgi Lucas David1ORCID,Blarer Albert2ORCID,Cudre-Mauroux Philippe1ORCID

Affiliation:

1. University of Fribourg, Fribourg, Switzerland

2. ArmaSuisse, Bern, Switzerland

Abstract

Graph Pattern Mining (GPM) is a class of algorithms that identifies given shapes within a graph, e.g., cliques of a certain size. Any area of a graph can contain a shape of interest, but in real-world graphs, these shapes tend to be concentrated in areas deemed skewed. Because mining skewed areas can dominate GPM computations, the overwhelming majority of state-of-the-art GPM techniques break such areas into many small parts and load balance them across servers. This paper takes a diametrically opposite approach: we suggest a framework that concentrates rather than divides the skewed areas. Our framework, called GraphINC, relies on two key innovations. First, it introduces a new graph partitioning scheme capable of separating the skewed area from the rest of the graph. Second, it offloads the skewed part onto a new class of hardware accelerator, a programmable network switch. We implemented our framework to leverage a commercial 100 Gbps switch and obtained results 6.5 to 52.4× faster thanks to our novel offloading technique.

Funder

ArmaSuisse

Swiss State Secretariat for 1498 Education (SERI) - SmartEDGE

Publisher

Association for Computing Machinery (ACM)

Reference82 articles.

1. Biomolecular network motif counting and discovery by color coding

2. Arista. 2020. High Performance Multi-function Programmable Platforms. https://www.arista.com/en/products/7170-series. Arista. 2020. High Performance Multi-function Programmable Platforms. https://www.arista.com/en/products/7170-series.

3. Arista. 2022. 400G Solutions. https://www.arista.com/en/products/400g-solutions. Arista. 2022. 400G Solutions. https://www.arista.com/en/products/400g-solutions.

4. Austin R Benson , David F Gleich , and Jure Leskovec . 2016. Higher-order organization of complex networks. Science 353, 6295 ( 2016 ), 163--166. Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organization of complex networks. Science 353, 6295 (2016), 163--166.

5. SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PimPam: Efficient Graph Pattern Matching on Real Processing-in-Memory Hardware;Proceedings of the ACM on Management of Data;2024-05-29

2. Data Flow Architectures for Data Processing on Modern Hardware;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Databases on Modern Networks: A Decade of Research That Now Comes into Practice;Proceedings of the VLDB Endowment;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3