Foreground and background interaction with sensor-enhanced mobile devices

Author:

Hinckley Ken1,Pierce Jeff2,Horvitz Eric1,Sinclair Mike1

Affiliation:

1. Microsoft Research, Redmond, WA

2. Georgia Institute of Technology, Atlanta, GA

Abstract

Building on Buxton's foreground/background model, we discuss the importance of explicitly considering both foreground interaction and background interaction, as well as transitions between foreground and background, in the design and implementation of sensing techniques for sensor-enhanced mobile devices. Our view is that the foreground concerns deliberate user activity where the user is attending to the device, while the background is the realm of inattention or split attention, using naturally occurring user activity as an input that allows the device to infer or anticipate user needs. The five questions for sensing systems of Bellotti et al. [2002] proposed as a framework for this special issue, primarily address the foreground, but neglect critical issues with background sensing. To support our perspective, we discuss a variety of foreground and background sensing techniques that we have implemented for sensor-enhanced mobile devices, such as powering on the device when the user picks it up, sensing when the user is holding the device to his ear, automatically switching between portrait and landscape display orientations depending on how the user is holding the device, and scrolling the display using tilt. We also contribute system architecture issues, such as using the foreground/background model to handle cross-talk between multiple sensor-based interaction techniques, and theoretical perspectives, such as a classification of recognition errors based on explicitly considering transitions between the foreground and background. Based on our experiences, we propose design issues and lessons learned for foreground/background sensing systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Audio: Towards a Design Space of Headphones as a Site for Interaction and Sensing;Proceedings of the 2023 ACM Designing Interactive Systems Conference;2023-07-10

2. Investigating Guardian Awareness Techniques to Promote Safety in Virtual Reality;2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2023-03

3. NLPC: A nimble low-priority congestion control algorithm for high-speed and lossy networks;Journal of King Saud University - Computer and Information Sciences;2022-11

4. Theory and Design Considerations for the User Experience of Smart Environments;IEEE Transactions on Human-Machine Systems;2022-06

5. Towards a Semantic Classification of Possible Human-to-Environment Interactions in IoT;Distributed, Ambient and Pervasive Interactions;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3