Affiliation:
1. Department of Mathematics, University of Rome Tor Vergata, Rome, Italy
Abstract
Multi-degree Tchebycheffian splines are splines with pieces drawn from extended (complete) Tchebycheff spaces, which may differ from interval to interval, and possibly of different dimensions. These are a natural extension of multi-degree polynomial splines. Under quite mild assumptions, they can be represented in terms of a so-called multi-degree Tchebycheffian B-spline (MDTB-spline) basis; such basis possesses all the characterizing properties of the classical polynomial B-spline basis. We present a practical framework to compute MDTB-splines, and provide an object-oriented implementation in
Matlab
. The implementation supports the construction, differentiation, and visualization of MDTB-splines whose pieces belong to Tchebycheff spaces that are null-spaces of constant-coefficient linear differential operators. The construction relies on an extraction operator that maps local Tchebycheffian Bernstein functions to the MDTB-spline basis of interest.
Funder
Beyond Borders Programme of the University of Rome Tor Vergata through the project ASTRID
MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献