A Classification of Feedback Loops and Their Relation to Biases in Automated Decision-Making Systems

Author:

Pagan Nicolò1ORCID,Baumann Joachim2ORCID,Elokda Ezzat3ORCID,De Pasquale Giulia3ORCID,Bolognani Saverio3ORCID,Hannák Anikó1ORCID

Affiliation:

1. University of Zurich, Switzerland

2. University of Zurich, Switzerland and Zurich University of Applied Sciences, Switzerland

3. ETH Zurich, Switzerland

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

ACM

Reference81 articles.

1. George Alexandru Adam , Chun- Hao Kingsley Chang , Benjamin Haibe-Kains , and Anna Goldenberg . 2020 . Hidden Risks of Machine Learning Applied to Healthcare: Unintended Feedback Loops Between Models and Future Data Causing Model Degradation . In Proceedings of the 5th Machine Learning for Healthcare Conference(Proceedings of Machine Learning Research, Vol. 126) , Finale Doshi-Velez, Jim Fackler, Ken Jung, David Kale, Rajesh Ranganath, Byron Wallace, and Jenna Wiens (Eds.). PMLR, 710–731. https://proceedings.mlr.press/v126/adam20a.html George Alexandru Adam, Chun-Hao Kingsley Chang, Benjamin Haibe-Kains, and Anna Goldenberg. 2020. Hidden Risks of Machine Learning Applied to Healthcare: Unintended Feedback Loops Between Models and Future Data Causing Model Degradation. In Proceedings of the 5th Machine Learning for Healthcare Conference(Proceedings of Machine Learning Research, Vol. 126), Finale Doshi-Velez, Jim Fackler, Ken Jung, David Kale, Rajesh Ranganath, Byron Wallace, and Jenna Wiens (Eds.). PMLR, 710–731. https://proceedings.mlr.press/v126/adam20a.html

2. Julia Angwin , Jeff Larson , Surya Mattu , and Lauren Kirchner . 2016 . Machine bias . ProPublica , May 23, 2016 (2016), 139–159. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine bias. ProPublica, May 23, 2016 (2016), 139–159. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

3. Karl Johan Åström and Richard  M Murray . 2021. Feedback systems: an introduction for scientists and engineers . Princeton university press . Karl Johan Åström and Richard M Murray. 2021. Feedback systems: an introduction for scientists and engineers. Princeton university press.

4. Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http://www.fairmlbook.org Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http://www.fairmlbook.org

5. Bias on Demand: A Modelling Framework That Generates Synthetic Data With Bias

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harm Mitigation in Recommender Systems under User Preference Dynamics;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. From the Fair Distribution of Predictions to the Fair Distribution of Social Goods: Evaluating the Impact of Fair Machine Learning on Long-Term Unemployment;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

3. Policy advice and best practices on bias and fairness in AI;Ethics and Information Technology;2024-04-29

4. Fairness and Bias in Robot Learning;Proceedings of the IEEE;2024-04

5. Control Strategies for Recommendation Systems in Social Networks;IEEE Control Systems Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3