On Kinetic Delaunay Triangulations

Author:

Rubin Natan1

Affiliation:

1. Ben-Gurion University of The Negev, Israel

Abstract

Let P be a collection of n points in the plane, each moving along some straight line at unit speed. We obtain an almost tight upper bound of O ( n 2+ϵ ), for any ϵ > 0, on the maximum number of discrete changes that the Delaunay triangulation DT( P ) of P experiences during this motion. Our analysis is cast in a purely topological setting, where we only assume that (i) any four points can be co-circular at most three times, and (ii) no triple of points can be collinear more than twice; these assumptions hold for unit speed motions.

Funder

Fondation Sciences Mathématiques de Paris

Minerva Fellowship Program of the Max Planck Society

public grant overseen by the French National Research Agency (ANR) as part of the Investissements d'Avenir program

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference27 articles.

1. The overlay of lower envelopes and its applications

2. Kinetic stable Delaunay graphs

3. P. K. Agarwal J. Gao L. J. Guibas H. Kaplan N. Rubin and M. Sharir. 2015. Stable Delaunay graphs. http://arxiv.org/abs/1504.06851. P. K. Agarwal J. Gao L. J. Guibas H. Kaplan N. Rubin and M. Sharir. 2015. Stable Delaunay graphs. http://arxiv.org/abs/1504.06851.

4. P. K. Agarwal H. Kaplan N. Rubin and M. Sharir. 2014. Kinetic Voronoi diagrams and Delaunay triangulations under polygonal distance functions. http://arxiv.org/abs/1404.4851. P. K. Agarwal H. Kaplan N. Rubin and M. Sharir. 2014. Kinetic Voronoi diagrams and Delaunay triangulations under polygonal distance functions. http://arxiv.org/abs/1404.4851.

5. A Two-Dimensional Kinetic Triangulation with Near-Quadratic Topological Changes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinetic Geodesic Voronoi Diagrams in a Simple Polygon;SIAM Journal on Discrete Mathematics;2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3