Training-Free Human Vitality Monitoring Using Commodity Wi-Fi Devices

Author:

Li Xiang1,Zhang Daqing1,Xiong Jie2,Zhang Yue1,Li Shengjie1,Wang Yasha3,Mei Hong1

Affiliation:

1. Key Laboratory of High Confidence Software Technologies (Ministry of Education), School of Electronics Engineering and Computer Science, Peking University, Beijing, China

2. University of Massachusetts, Amherst, Massachusetts, USA

3. Key Laboratory of High Confidence Software Technologies (Ministry of Education), National Engineering Research Center for Software Engineering, Peking University, Beijing, China

Abstract

Device-free sensing using ubiquitous Wi-Fi signals has recently attracted lots of attention. Among the sensed information, two important basic contexts are (i) whether a target is still or not and (ii) where the target is located. Continuous monitoring of these contexts provides us with rich datasets to obtain important high-level semantics of the target such as living habits, physical conditions and emotions. However, even to obtain these two basic contexts, offline training and calibration are needed in traditional methods, limiting the real-life adoption of the proposed sensing systems. In this paper, using the commodity Wi-Fi infrastructure, we propose a training-free human vitality sensing platform, WiVit. It could capture these two contexts together with the target's movements speed information in real-time without any human effort in offline training or calibration. Based on our extensive experiments in three typical indoor environments, the precision of activity detection is higher than 98% and the area detection accuracy is close to 100%. Moreover, we implement a short-term activity recognition system on our platform to recognize 4 types of actions, and we can reach an average accuracy of 94.2%. We also take a feasibility study of monitoring long-term activities of daily living to show our platform's potential applications in practice.

Funder

National Key Research and Development Plan

Peking University Information Technology Institute

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3