HyperBench

Author:

Wei Song1,Zhang Kun1,Tu Bibo1

Affiliation:

1. Institute of Information Engineering, CAS & School of Cyber Security, UCAS, Beijing, China

Abstract

Virtualization is becoming increasingly common in data centers due to its various advantages. However, how to choose among different platforms, including both software and hardware, is a considerable challenge. In this context, evaluating the virtualization capabilities of different platforms is critically important. Regrettably, the existing benchmarks are not qualified for meeting this requirement. Different hardware mechanisms and hypervisor designs introduce many different hypervisor-level events, such as transitions between VMs and the hypervisor, two-dimensional page walk, and binary translation. These events are key factors affecting virtualization performance. Existing benchmarks either overlook these changes or are tightly coupled to a particular hypervisor. In this paper, we present HyperBench, a benchmark suite that focuses on the capabilities of different virtualization platforms. Currently, we design 15 hypervisor benchmarks covering CPU, memory, and I/O. The virtualization-sensitive operation in each benchmark triggers hypervisor-level events, which examines the platform's ability in the target area. HyperBench is designed as a custom kernel which can adapt to different hypervisors and architectures. What's more, adding a new benchmark is pretty easy. Finally, we perform a series of experiments on the host machine and several popular hypervisors, such as QEMU, KVM, and Xen, demonstrating that HyperBench is capable of revealing the performance implications of the hardware mechanism and hypervisor design.

Funder

National Key R&D Program of China

Guangdong Province Key Area R&D Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BTBench: A Benchmark for Comprehensive Binary Translation Performance Evaluation;2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS);2024-05-05

2. Application of cloud computing key technology in aerospace TT&C;Open Astronomy;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3