Architecture-Aware Approximate Computing

Author:

Karakoy Mustafa1,Kislal Orhan2,Tang Xulong2,Kandemir Mahmut Taylan2,Arunachalam Meenakshi3

Affiliation:

1. TOBB University of Economics and Technology, Ankara, Turkey

2. Pennsylvania State University, State College, PA, USA

3. Intel, Hillsboro, OR, USA

Abstract

Deliberate use of approximate computing has been an active research area recently. Observing that many application programs from different domains can live with less-than-perfect accuracy, existing techniques try to trade off program output accuracy with performance-energy savings. While these works provide point solutions, they leave three critical questions regarding approximate computing unanswered, especially in the context of dropping/skipping costly data accesses: (i) what is the maximum potential of skipping (i.e., not performing) data accesses under a given inaccuracy bound?; (ii) can we identify the data accesses to drop randomly, or is being architecture aware (i.e., identifying the costliest data accesses in a given architecture) critical?; and (iii) do two executions that skip the same number of data accesses always result in the same output quality (error)? This paper first provides answers to these questions using ten multithreaded workloads, and then, motivated by the negative answer to the third question, presents a program slicing-based approach that identifies the set of data accesses to drop such that (i) the resulting performance/energy benefits are maximized and (ii) the execution remains within the error (inaccuracy) bound specified by the user. Our slicing-based approach first uses backward slicing and then forward slicing to decide the set of data accesses to drop. Our experimental evaluations using ten multithreaded workloads show that, when averaged over all benchmark programs we have, 8.8% performance improvement and 13.7% energy saving are possible when we set the error bound to 2%, and the corresponding improvements jump to 15% and 25%, respectively, when the error bound is raised to 4%.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Reference56 articles.

1. Akturk I. Khatamifard K. and Karpuzcu U. R. On quantification of accuracy loss in approximate computing. Akturk I. Khatamifard K. and Karpuzcu U. R. On quantification of accuracy loss in approximate computing.

2. The PARSEC benchmark suite

3. The gem5 simulator

4. Automatically identifying critical input regions and code in applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimization Technique for PMF Estimation in Approximate Circuits;Journal of Computer Science and Technology;2023-03-30

2. Approximate execution and grouping of critical sections for performance‐accuracy tradeoff;Concurrency and Computation: Practice and Experience;2023-01-11

3. Data Transfer API and its Performance Model for Rank-Level Approximate Computing on HPC Systems;International Journal of Networking and Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3