Load Balancing Guardrails

Author:

Grosof Isaac1,Scully Ziv2,Harchol-Balter Mor2

Affiliation:

1. Carnegie Mellon University, Pittsbugh, PA, USA

2. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Load balancing systems, comprising a central dispatcher and a scheduling policy at each server, are widely used in practice, and their response time has been extensively studied in the theoretical literature. While much is known about the scenario where the scheduling at the servers is First-Come-First-Served (FCFS), to minimize mean response time we must use Shortest-Remaining-Processing-Time (SRPT) scheduling at the servers. Much less is known about dispatching polices when SRPT scheduling is used. Unfortunately, traditional dispatching policies that are used in practice in systems with FCFS servers often have poor performance in systems with SRPT servers. In this paper, we devise a simple fix that can be applied to any dispatching policy. This fix, called guardrails, ensures that the dispatching policy yields optimal mean response time under heavy traffic when used in a system with SRPT servers. Any dispatching policy, when augmented with guardrails, becomes heavy-traffic optimal. Our results yield the first analytical bounds on mean response time for load balancing systems with SRPT scheduling at the servers.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heavy-Traffic Optimal Size- and State-Aware Dispatching;ACM SIGMETRICS Performance Evaluation Review;2024-06-11

2. Heavy-Traffic Optimal Size- and State-Aware Dispatching;Abstracts of the 2024 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems;2024-06-10

3. Heavy-Traffic Optimal Size- and State-Aware Dispatching;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2024-02-16

4. Performance of the Gittins policy in the G/G/1 and G/G/k, with and without setup times;Performance Evaluation;2024-01

5. Optimal Scheduling in the Multiserver-job Model under Heavy Traffic;ACM SIGMETRICS Performance Evaluation Review;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3