A new intra-disk redundancy scheme for high-reliability RAID storage systems in the presence of unrecoverable errors

Author:

Dholakia Ajay1,Eleftheriou Evangelos2,Hu Xiao-Yu2,Iliadis Ilias2,Menon Jai3,Rao K.K.4

Affiliation:

1. IBM Systems and Technology Group, Research Triangle Park, NC

2. IBM Zurich Research Laboratory, Rüschlikon, Switzerland

3. IBM Systems and Technology Group, San Jose, CA

4. IBM Almaden Research Center, San Jose, CA

Abstract

Today's data storage systems are increasingly adopting low-cost disk drives that have higher capacity but lower reliability, leading to more frequent rebuilds and to a higher risk of unrecoverable media errors. We propose an efficient intradisk redundancy scheme to enhance the reliability of RAID systems. This scheme introduces an additional level of redundancy inside each disk, on top of the RAID redundancy across multiple disks. The RAID parity provides protection against disk failures, whereas the proposed scheme aims to protect against media-related unrecoverable errors. In particular, we consider an intradisk redundancy architecture that is based on an interleaved parity-check coding scheme, which incurs only negligible I/O performance degradation. A comparison between this coding scheme and schemes based on traditional Reed--Solomon codes and single-parity-check codes is conducted by analytical means. A new model is developed to capture the effect of correlated unrecoverable sector errors. The probability of an unrecoverable failure associated with these schemes is derived for the new correlated model, as well as for the simpler independent error model. We also derive closed-form expressions for the mean time to data loss of RAID-5 and RAID-6 systems in the presence of unrecoverable errors and disk failures. We then combine these results to characterize the reliability of RAID systems that incorporate the intradisk redundancy scheme. Our results show that in the practical case of correlated errors, the interleaved parity-check scheme provides the same reliability as the optimum, albeit more complex, Reed--Solomon coding scheme. Finally, the I/O and throughput performances are evaluated by means of analysis and event-driven simulation.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disk Failure Trends in Alpine Storage System;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

2. Reliability Evaluation of Erasure-coded Storage Systems with Latent Errors;ACM Transactions on Storage;2023-01-11

3. Bibliography;Storage Systems;2022

4. Saving power in disks, flash memories, and servers;Storage Systems;2022

5. Redundant Arrays of Independent Disks - RAID;Storage Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3