ELAKT: Enhancing Locality for Attentive Knowledge Tracing

Author:

Pu Yanjun1ORCID,Liu Fang2ORCID,Shi Rongye2ORCID,Yuan Haitao3ORCID,Chen Ruibo2ORCID,Peng Tianhao4ORCID,Wu Wenjun2ORCID

Affiliation:

1. School of Computer Science and Engineering, Beihang University, Beijing, China and Zhongguancun Laboratory, Beijing, China

2. Institute of Artificial Intelligence, Beihang University, Beijing, China

3. Department of Computer Science and Engineering, Tsinghua University, Beijing, China

4. School of Computer Science and Engineering, Beihang University, Beijing, China

Abstract

Knowledge tracing models based on deep learning can achieve impressive predictive performance by leveraging attention mechanisms. However, there still exist two challenges in attentive knowledge tracing (AKT): First, the mechanism of classical models of AKT demonstrates relatively low attention when processing exercise sequences with shifting knowledge concepts (KC), making it difficult to capture the comprehensive state of knowledge across sequences. Second, classical models do not consider stochastic behaviors, which negatively affects models of AKT in terms of capturing anomalous knowledge states. This article proposes a model of AKT, called Enhancing Locality for Attentive Knowledge Tracing (ELAKT), that is a variant of the deep KT model. The proposed model leverages the encoder module of the transformer to aggregate knowledge embedding generated by both exercises and responses over all timesteps. In addition, it uses causal convolutions to aggregate and smooth the states of local knowledge. The ELAKT model uses the states of comprehensive KCs to introduce a prediction correction module to forecast the future responses of students to deal with noise caused by stochastic behaviors. The results of experiments demonstrated that the ELAKT model consistently outperforms state-of-the-art baseline KT models.

Funder

State Key Laboratory of Software Development Environment

Zhongguancun Laboratory

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3