Report on the 1st Workshop on Measuring the Quality of Explanations in Recommender Systems (QUARE 2022) at SIGIR 2022
Author:
Affiliation:
1. Datalab, BBC, London, United Kingdom
2. University of Zurich, Zurich, Switzerland
3. University of Amsterdam, Amsterdam, the Netherlands
4. AE NV, Bruges, Belgium
5. Google, Stavanger, Norway
Abstract
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Management Information Systems
Link
https://dl.acm.org/doi/pdf/10.1145/3582900.3582915
Reference28 articles.
1. Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity of Explanations
2. Mustafa Bilgic and Raymond Mooney . Explaining recommendations : Satisfaction vs. promotion . In Proceedings of Beyond Personalization 2005: A Workshop on the Next Stage of Recommender Systems Research at the 2005 International Conference on Intelligent User Interfaces , 2005 . Mustafa Bilgic and Raymond Mooney. Explaining recommendations: Satisfaction vs. promotion. In Proceedings of Beyond Personalization 2005: A Workshop on the Next Stage of Recommender Systems Research at the 2005 International Conference on Intelligent User Interfaces, 2005.
3. Xu Chen , Yongfeng Zhang , and Ji-Rong Wen . Measuring "why" in recommender systems : A comprehensive survey on the evaluation of explainable recommendation. arXiv, cs.IR/2202.06466 , 2022 . Xu Chen, Yongfeng Zhang, and Ji-Rong Wen. Measuring "why" in recommender systems: A comprehensive survey on the evaluation of explainable recommendation. arXiv, cs.IR/2202.06466, 2022.
4. Co-Attentive Multi-Task Learning for Explainable Recommendation
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. QUARE: 2nd Workshop on Measuring the Quality of Explanations in Recommender Systems;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14
2. Measuring the Impact of Explanation Bias: A Study of Natural Language Justifications for Recommender Systems;Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3