An Energy Efficient Health Monitoring Approach with Wireless Body Area Networks

Author:

Jain Seemandhar1,Jain Prarthi1,Upadhyay Prabhat K.1,Moualeu Jules M.2,Srivastava Abhishek1ORCID

Affiliation:

1. Indian Institute of Technology Indore, Madhya Pradesh, Indore, India

2. University of the Witwatersrand, Johannesburg, South Africa

Abstract

Wireless Body Area Networks (WBANs) comprise a network of sensors subcutaneously implanted or placed near the body surface and facilitate continuous monitoring of health parameters of a patient. Research endeavours involving WBAN are directed towards effective transmission of detected parameters to a Local Processing Unit (LPU, usually a mobile device) and analysis of the parameters at the LPU or a back-end cloud. An important concern in WBAN is the lightweight nature of WBAN nodes and the need to conserve their energy. This is especially true for subcutaneously implanted nodes that cannot be recharged or regularly replaced. Work in energy conservation is mostly aimed at optimising the routing of signals to minimise energy expended. In this article, a simple yet innovative approach to energy conservation and detection of alarming health status is proposed. Energy conservation is ensured through a two-tier approach wherein the first tier eliminates “uninteresting” health parameter readings at the site of a sensing node and prevents these from being transmitted across the WBAN to the LPU. The second tier of assessment includes a proposed anomaly detection model at the LPU that is capable of identifying anomalies from streaming health parameter readings and indicates an adverse medical condition. In addition to being able to handle streaming data, the model works within the resource-constrained environments of an LPU and eliminates the need of transmitting the data to a back-end cloud, ensuring further energy savings. The anomaly detection capability of the model is validated using data available from the critical care units of hospitals and is shown to be superior to other anomaly detection techniques.

Funder

Ministry of Electronics & Information Technology

National Research Foundation

Science and Engineering Research Board

Publisher

Association for Computing Machinery (ACM)

Subject

Health Information Management,Health Informatics,Computer Science Applications,Biomedical Engineering,Information Systems,Medicine (miscellaneous),Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3