HoPE

Author:

Park Jaehyun1,Baek Seungcheol2,Lee Hyung Gyu3,Nicopoulos Chrysostomos4,Young Vinson5,Lee Junghee6,Kim Jongman7

Affiliation:

1. Arizona State University, Tempe, AZ, USA

2. Samsung Electronics Co., Ltd., Gyeonggi-do, South Korea

3. Daegu University, Gyeongbuk, South Korea

4. University of Cyprus, Nicosia, Cyprus

5. Georgia Institute of Technology, Atlanta, USA

6. University of Texas at San Antonio, TX, USA

7. Soteria Systems LLC, Atlanta, USA

Abstract

Data compression plays a pivotal role in improving system performance and reducing energy consumption, because it increases the logical effective capacity of a compressed memory system without physically increasing the memory size. However, data compression techniques incur some cost, such as non-negligible compression and decompression overhead. This overhead becomes more severe if compression is used in the cache. In this article, we aim to minimize the read-hit decompression penalty in compressed Last-Level Caches (LLCs) by speculatively decompressing frequently used cachelines. To this end, we propose a Hot-cacheline Prediction and Early decompression (HoPE) mechanism that consists of three synergistic techniques: Hot-cacheline Prediction (HP), Early Decompression (ED), and Hit-history-based Insertion (HBI). HP and HBI efficiently identify the hot compressed cachelines, while ED selectively decompresses hot cachelines, based on their size information. Unlike previous approaches, the HoPE framework considers the performance balance/tradeoff between the increased effective cache capacity and the decompression penalty. To evaluate the effectiveness of the proposed HoPE mechanism, we run extensive simulations on memory traces obtained from multi-threaded benchmarks running on a full-system simulation framework. We observe significant performance improvements over compressed cache schemes employing the conventional Least-Recently Used (LRU) replacement policy, the Dynamic Re-Reference Interval Prediction (DRRIP) scheme, and the Effective Capacity Maximizer (ECM) compressed cache management mechanism. Specifically, HoPE exhibits system performance improvements of approximately 11%, on average, over LRU, 8% over DRRIP, and 7% over ECM by reducing the read-hit decompression penalty by around 65%, over a wide range of applications.

Funder

National Research Foundation of Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enterprise-Class Cache Compression Design;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

2. Understanding Cache Compression;ACM Transactions on Architecture and Code Optimization;2021-06

3. D-SOAP: Dynamic Spatial Orientation Affinity Prediction for Caching in Multi-Orientation Memory Systems;2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO);2020-10

4. MBZip;ACM Transactions on Architecture and Code Optimization;2017-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3