Affiliation:
1. Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Abstract
Many applications of action recognition, especially broad domains like surveillance or anomaly-detection, favor unsupervised methods considering that exhaustive labeling of actions is not possible. However, very limited work has happened in this domain. Moreover, the existing self-supervised approaches suffer from their dependency upon labeled data for finetuning. To this end, this paper puts forward a manifold based unsupervised pose-sequence recognition approach that leverages only the natural biases present in the data. It works by clustering the projections of temporal derivatives of the fragmented data on the Grassmann manifold. Temporal derivatives are formed by the inter-frame gradients with local and global metrics. To commensurate with this, a dynamic view-invariant pose representation is proposed. Additionally, a variable aggregation step is introduced for better feature vector quantization. Extensive empirical evaluation and ablations on several challenging datasets under three categories confirm the superiority of the proposed approach in contrast to current methods.
Funder
Ministry of Electronics and Information Technology, Govt. of India
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献