Approximating Generalized Network Design under (Dis)economies of Scale with Applications to Energy Efficiency

Author:

Emek Yuval1,Kutten Shay1,Lavi Ron1,Shi Yangguang1ORCID

Affiliation:

1. Technion - Israel Institute of Technology, Haifa, Israel

Abstract

In a generalized network design (GND) problem, a set of resources are assigned (non-exclusively) to multiple requests . Each request contributes its weight to the resources it uses and the total load on a resource is then translated to the cost it incurs via a resource-specific cost function. Motivated by energy efficiency applications, recently, there is a growing interest in GND using cost functions that exhibit (dis)economies of scale ((D)oS) , namely, cost functions that appear subadditive for small loads and superadditive for larger loads. The current article advances the existing literature on approximation algorithms for GND problems with (D)oS cost functions in various aspects: (1) while the existing results are restricted to routing requests in undirected graphs, identifying the resources with the graph’s edges, the current article presents a generic approximation framework that yields approximation results for a much wider family of requests (including various types of Steiner tree and Steiner forest requests) in both directed and undirected graphs, where the resources can be identified with either the edges or the vertices; (2) while the existing results assume that a request contributes the same weight to each resource it uses, our approximation framework allows for unrelated weights, thus providing the first non-trivial approximation for the problem of scheduling unrelated parallel machines with (D)oS cost functions; (3) while most of the existing approximation algorithms are based on convex programming, our approximation framework is fully combinatorial and runs in strongly polynomial time; (4) the family of (D)oS cost functions considered in the current article is more general than the one considered in the existing literature, providing a more accurate abstraction for practical energy conservation scenarios; and (5) we obtain the first approximation ratio for GND with (D)oS cost functions that depends only on the parameters of the resources’ technology and does not grow with the number of resources, the number of requests, or their weights. The design of our approximation framework relies heavily on Roughgarden’s smoothness toolbox [43], thus demonstrating the possible usefulness of this toolbox in the area of approximation algorithms.

Funder

Ministry of Science

Israeli Science Foundation

ISF-NSFC

JSPS

BSF

Israel Council for Higher Education

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Generalized Network Design Under (Dis)Economies of Scale;Mathematics of Operations Research;2023-01-12

2. Stackelberg pricing games with congestion effects;Mathematical Programming;2021-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3