KDD Cup and workshop 2007

Author:

Bennett James1,Elkan Charles2,Liu Bing3,Smyth Padhraic4,Tikk Domonkos5

Affiliation:

1. Netflix, Los Gatos, CA

2. University of California, San Diego, La Jolla, CA

3. University of Illinois at Chicago, Chicago, IL

4. University of California, Irvine, CA

5. Budapest University of Technology and Economics, Budapest, Magyar Tudósok krt. 2, Hungary

Abstract

The KDD Cup is the oldest of the many data mining competitions that are now popular [1]. It is an integral part of the annual ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). In 2007, the traditional KDD Cup competition was augmented with a workshop with a focus on the concurrently active Netflix Prize competition [2]. The KDD Cup itself in 2007 consisted of a prediction competition using Netflix movie rating data, with tasks that were different and separate from those being used in the Netflix Prize itself. At the workshop, participants in both the KDD Cup and the Netflix Prize competition presented their results and analyses, and exchanged ideas.

Publisher

Association for Computing Machinery (ACM)

Reference5 articles.

1. http://www.kdnuggets.com/datasets/kddcup.html http://www.kdnuggets.com/datasets/kddcup.html

2. http://www.netflixprize.com http://www.netflixprize.com

3. Learning a meta-level prior for feature relevance from multiple related tasks

4. Restricted Boltzmann machines for collaborative filtering

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RECOMED: A comprehensive pharmaceutical recommendation system;Artificial Intelligence in Medicine;2024-09

2. From Variability to Stability: Advancing RecSys Benchmarking Practices;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Augmented degree correction for bipartite networks with applications to recommender systems;Applied Network Science;2024-06-04

4. The Hadamard decomposition problem;Data Mining and Knowledge Discovery;2024-05-21

5. 8–10% of algorithmic recommendations are ‘bad’, but… an exploratory risk-utility meta-analysis and its regulatory implications;International Journal of Information Management;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3