Exploring C semantics and pointer provenance

Author:

Memarian Kayvan1,Gomes Victor B. F.1,Davis Brooks2,Kell Stephen1,Richardson Alexander1,Watson Robert N. M.1,Sewell Peter1

Affiliation:

1. University of Cambridge, UK

2. SRI International, USA

Abstract

The semantics of pointers and memory objects in C has been a vexed question for many years. C values cannot be treated as either purely abstract or purely concrete entities: the language exposes their representations, but compiler optimisations rely on analyses that reason about provenance and initialisation status, not just runtime representations. The ISO WG14 standard leaves much of this unclear, and in some respects differs with de facto standard usage --- which itself is difficult to investigate. In this paper we explore the possible source-language semantics for memory objects and pointers, in ISO C and in C as it is used and implemented in practice, focussing especially on pointer provenance. We aim to, as far as possible, reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on by the corpus of existing C code. We present two coherent proposals, tracking provenance via integers and not; both address many design questions. We highlight some pros and cons and open questions, and illustrate the discussion with a library of test cases. We make our semantics executable as a test oracle, integrating it with the Cerberus semantics for much of the rest of C, which we have made substantially more complete and robust, and equipped with a web-interface GUI. This allows us to experimentally assess our proposals on those test cases. To assess their viability with respect to larger bodies of C code, we analyse the changes required and the resulting behaviour for a port of FreeBSD to CHERI, a research architecture supporting hardware capabilities, which (roughly speaking) traps on the memory safety violations which our proposals deem undefined behaviour. We also develop a new runtime instrumentation tool to detect possible provenance violations in normal C code, and apply it to some of the SPEC benchmarks. We compare our proposal with a source-language variant of the twin-allocation LLVM semantics proposal of Lee et al. Finally, we describe ongoing interactions with WG14, exploring how our proposals could be incorporated into the ISO standard.

Funder

ERC

EPSRC

DARPA/AFRL

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Two-Phase Infinite/Finite Low-Level Memory Model: Reconciling Integer–Pointer Casts, Finite Space, and undef at the LLVM IR Level of Abstraction;Proceedings of the ACM on Programming Languages;2024-08-15

2. Full Spatial and Temporal Memory Safety for C;IEEE Security & Privacy;2024-07

3. Formal Mechanised Semantics of CHERI C: Capabilities, Undefined Behaviour, and Provenance;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1;2024-04-17

4. A Semantics of Structures, Unions, and Underspecified Terms for Formal Specification;Proceedings of the 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering (FormaliSE);2024-04-14

5. A formal model of Checked C1;Journal of Computer Security;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3