Backdoor Two-Stream Video Models on Federated Learning

Author:

Zhao Jing1ORCID,Yang Hongwei1ORCID,He Hui1ORCID,Peng Jie1ORCID,Zhang Weizhe1ORCID,Ni Jiangqun2ORCID,Sangaiah Arun Kumar3ORCID,Castiglione Aniello4ORCID

Affiliation:

1. Harbin Institute of Technology, Harbin, China

2. Sun Yat-Sen University, Guangzhou, China

3. National Yunlin University of Science and Technology, Yunlin, Taiwan and Lebanese American University, Byblos, Lebanon

4. University of Salerno, Fisciano, Italy

Abstract

Video models on federated learning (FL) enable continual learning of the involved models for video tasks on end-user devices while protecting the privacy of end-user data. As a result, the security issues on FL, e.g., the backdoor attacks on FL and their defense have increasingly become the domains of extensive research in recent years. The backdoor attacks on FL are a class of poisoning attacks, in which an attacker, as one of the training participants, submits poisoned parameters and thus injects the backdoor into the global model after aggregation. Existing backdoor attacks against videos based on FL only poison RGB frames, which makes it that the attack could be easily mitigated by two-stream model neutralization. Therefore, it is a big challenge to manipulate the most advanced two-stream video model with a high success rate by poisoning only a small proportion of training data in the framework of FL. In this paper, a new backdoor attack scheme incorporating the rich spatial and temporal structures of video data is proposed, which injects the backdoor triggers into both the optical flow and RGB frames of video data through multiple rounds of model aggregations. In addition, the adversarial attack is utilized on the RGB frames to further boost the robustness of the attacks. Extensive experiments on real-world datasets verify that our methods outperform the state-of-the-art backdoor attacks and show better performance in terms of stealthiness and persistence.

Funder

Joint Funds of the National Natural Science Foundation of China

Shenzhen Colleges and Universities Stable Support

Publisher

Association for Computing Machinery (ACM)

Reference63 articles.

1. Eugene Bagdasaryan and Vitaly Shmatikov. 2021. Blind backdoors in deep learning models. In Usenix Security. (2021), 1505–1521.

2. Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020. How to backdoor federated learning. In International Conference on Artificial Intelligence and Statistics. PMLR, 2938–2948.

3. A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning

4. Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. 2019. Analyzing federated learning through an adversarial lens. In International Conference on Machine Learning. PMLR, 634–643.

5. Machine learning with adversaries: Byzantine tolerant gradient descent;Blanchard Peva;Advances in Neural Information Processing Systems,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to Special Issue on “Recent trends in Multimedia Forensics”;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3