Autonomous Orchestration of Distributed Discrete Event Simulations in the Presence of Resource Uncertainty

Author:

Sui Zhiquan1,Malensek Matthew1,Harvey Neil2,Pallickara Shrideep1

Affiliation:

1. Colorado State University, CO, USA

2. University of Guelph, Ontario, Canada

Abstract

Discrete event simulations model the behavior of complex, real-world systems. Simulating a wide range of events and conditions provides a more nuanced model, but also increases its computational footprint. To manage these processing requirements in a scalable manner, discrete event simulations can be distributed across multiple computing resources. Orchestrating the simulations in a distributed setting involves coping with resource uncertainty. We consider three key aspects of resource uncertainty: resource failures, heterogeneity, and slowdowns. Each of these aspects is managed autonomously, which involves making accurate predictions of future execution times and latencies while also accounting for differences in hardware capabilities and dynamic resource consumption profiles. Further complicating matters, individual tasks within the simulation are stateful and stochastic, requiring inter-task communication and synchronization to produce accurate outcomes. We deal with these challenges through intelligent state collection and migration, active resource monitoring, and empirical evaluation of resource capabilities under changing conditions. To underscore the viability of our solution, we provide benchmarks using a production discrete event simulation that can simultaneously sustain failures, manage resource heterogeneity, and handle slowdowns while being orchestrated by our framework.

Funder

US Department of Homeland Security's Long Range program

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3