Finding probably best systems quickly via simulations

Author:

Osogami Takayuki1

Affiliation:

1. IBM Tokyo Research Laboratory, Kanagawa, Japan

Abstract

We propose an indifference-zone approach for a ranking and selection problem with the goal of reducing both the number of simulated samples of the performance and the frequency of configuration changes. We prove that with a prespecified high probability, our algorithm finds the best system configuration. Our proof hinges on several ideas, including the use of Anderson's probability bound, that have not been fully investigated for the ranking and selection problem. Numerical experiments show that our algorithm can select the best system configuration using up to 50% fewer simulated samples than existing algorithms without increasing the frequency of configuration changes.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modelling and Simulation

Reference21 articles.

1. A Modification of the Sequential Probability Ratio Test to Reduce the Sample Size

2. Bechhofer R. E. Santner T. J. and Goldsman D. M. 1995. Design and Analysis of Experiments for Statistical Selection Screening and Multiple Comparisons. John Wiley & Sons New York. Bechhofer R. E. Santner T. J. and Goldsman D. M. 1995. Design and Analysis of Experiments for Statistical Selection Screening and Multiple Comparisons. John Wiley & Sons New York.

3. Using Ranking and Selection to “Clean Up” after Simulation Optimization

4. Computing efforts allocation for ordinal optimization and discrete event simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Batched ranged random integer generation;Software: Practice and Experience;2024-08-25

2. Fixed-Confidence, Fixed-Tolerance Guarantees for Ranking-and-Selection Procedures;ACM Transactions on Modeling and Computer Simulation;2021-04-30

3. Fast Random Integer Generation in an Interval;ACM Transactions on Modeling and Computer Simulation;2019-01-31

4. A minimal switching procedure for constrained ranking and selection under independent or common random numbers;IIE Transactions;2015-03-06

5. Discrete Optimization via Simulation;Handbook of Simulation Optimization;2014-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3