Evaluating Automated Face Identity-Masking Methods with Human Perception and a Deep Convolutional Neural Network

Author:

Hooge Kimberley D. Orsten1ORCID,Baragchizadeh Asal1,Karnowski Thomas P.2,Bolme David S.2,Ferrell Regina2,Jesudasen Parisa R.1,Castillo Carlos D.3,O’toole Alice J.1

Affiliation:

1. The University of Texas at Dallas, Richardson, Texas

2. Oak Ridge National Laboratory, Oak Ridge, Tennessee

3. University of Maryland, Maryland

Abstract

Face de-identification (or “masking”) algorithms have been developed in response to the prevalent use of video recordings in public places. We evaluated the success of face identity masking for human perceivers and a deep convolutional neural network (DCNN). Eight de-identification algorithms were applied to videos of drivers’ faces, while they actively operated a motor vehicle. These masks were pre-selected to be applicable to low-quality video and to maintain coarse information about facial actions. Humans studied high-resolution images to learn driver identities and were tested on their recognition of active drivers in low-resolution videos. Faces in the videos were either unmasked or were masked by one of the eight algorithms. When participants were tested immediately after learning (Experiment 1), all masks reduced identification, with six of eight masks reducing identification to extremely poor performance. In a second experiment, two of the most effective masks were tested after a delay of 7 or 28 days. The delay did not further reduce identification of the masked faces. In all masked conditions, participants maintained stringent decision criteria, with low confidence in recognition, further indicating the effectiveness of the masks. Next, the DCNN performed an identity-matching task between high-resolution images and masked videos—a task analogous to that done by humans. The pattern of accuracy for the DCNN mirrored some, but not all, aspects of human performance, highlighting the need to test the effectiveness of identity masking for both humans and machines. The DCNN was also tested on its ability to match identity between masked and unmasked versions of the same video, based only on the face. DCNN performance for the eight masks offers insight into the nature of the information in faces that is coded in these networks.

Funder

Intelligence Advanced Research Projects Activity (IARPA), via IARPA R8D

Oak Ridge National Laboratory and the Federal Highway Administration under the Exploratory Advanced Research Program

Intelligence Advanced Research Projects Activity

Office of the Director of National Intelligence

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VDiSC: An Open Source Framework for Distributed Smart City Vision and Biometric Surveillance Networks;2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW);2023-01

2. Masked Face Recognition Using Deep Learning: A Review;Electronics;2021-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3