Relevance models to help estimate document and query parameters

Author:

Bodoff David1

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong

Abstract

A central idea of Language Models is that documents (and perhaps queries) are random variables, generated by data-generating functions that are characterized by document (query) parameters. The key new idea of this paper is to model that a relevance judgment is also generated stochastically, and that its data generating function is also governed by those same document and query parameters. The result of this addition is that any available relevance judgments are easily incorporated as additional evidence about the true document and query model parameters. An additional aspect of this approach is that it also resolves the long-standing problem of document-oriented versus query-oriented probabilities. The general approach can be used with a wide variety of hypothesized distributions for documents, queries, and relevance. We test the approach on Reuters Corpus Volume 1, using one set of possible distributions. Experimental results show that the approach does succeed in incorporating relevance data to improve estimates of both document and query parameters, but on this data and for the specific distributions we hypothesized, performance was no better than two separate one-sided models. We conclude that the model's theoretical contribution is its integration of relevance models, document models, and query models, and that the potential for additional performance improvement over one-sided methods requires refinements.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference19 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing sources of evidence in relevance feedback through geometry;Theoretical Computer Science;2018-12

2. Documents and queries as random variables: History and implications;Journal of the American Society for Information Science and Technology;2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3