Prediction and bounds on shared cache demand from memory access interleaving

Author:

Brock Jacob1,Ding Chen1,Lavaee Rahman1,Liu Fangzhou1,Yuan Liang2

Affiliation:

1. University of Rochester, USA

2. Institute of Computing Technology at Chinese Academy of Sciences, China

Abstract

Cache in multicore machines is often shared, and the cache performance depends on how memory accesses belonging to different programs interleave with one another. The full range of performance possibilities includes all possible interleavings, which are too numerous to be studied by experiments for any mix of non-trivial programs. This paper presents a theory to characterize the effect of memory access interleaving due to parallel execution of non-data-sharing programs. The theory uses an established metric called the footprint (which can be used to calculate miss ratios in fully-associative LRU caches) to measure cache demand, and considers the full range of interleaving possibilities. The paper proves a lower bound for footprints of interleaved traces, and then formulates an upper bound in terms of the footprints of the constituent traces. It also shows the correctness of footprint composition used in a number of existing techniques, and places precise bounds on its accuracy.

Funder

IBM CAS Faculty Fellowship

NFSC

National Key R&D Program of China

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3