Graph Deep Factors for Probabilistic Time-series Forecasting

Author:

Chen Hongjie1ORCID,Rossi Ryan A.2ORCID,Mahadik Kanak2ORCID,Kim Sungchul2ORCID,Eldardiry Hoda1ORCID

Affiliation:

1. Virginia Tech, Blacksburg, Virginia

2. Adobe Research, San Jose, USA

Abstract

Effective time-series forecasting methods are of significant importance to solve a broad spectrum of research problems. Deep probabilistic forecasting techniques have recently been proposed for modeling large collections of time-series. However, these techniques explicitly assume either complete independence (local model) or complete dependence (global model) between time-series in the collection. This corresponds to the two extreme cases where every time-series is disconnected from every other time-series in the collection or likewise, that every time-series is related to every other time-series resulting in a completely connected graph. In this work, we propose a deep hybrid probabilistic graph-based forecasting framework called Graph Deep Factors (GraphDF) that goes beyond these two extremes by allowing nodes and their time-series to be connected to others in an arbitrary fashion. GraphDF is a hybrid forecasting framework that consists of a relational global and relational local model. In particular, a relational global model learns complex non-linear time-series patterns globally using the structure of the graph to improve both forecasting accuracy and computational efficiency. Similarly, instead of modeling every time-series independently, a relational local model not only considers its individual time-series but also the time-series of nodes that are connected in the graph. The experiments demonstrate the effectiveness of the proposed deep hybrid graph-based forecasting model compared to the state-of-the-art methods in terms of its forecasting accuracy, runtime, and scalability. Our case study reveals that GraphDF can successfully generate cloud usage forecasts and opportunistically schedule workloads to increase cloud cluster utilization by 47.5% on average. Furthermore, we target addressing the common nature of many time-series forecasting applications where time-series are provided in a streaming version; however, most methods fail to leverage the newly incoming time-series values and result in worse performance over time. In this article, we propose an online incremental learning framework for probabilistic forecasting. The framework is theoretically proven to have lower time and space complexity. The framework can be universally applied to many other machine learning-based methods.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference85 articles.

1. An Empirical Comparison of Machine Learning Models for Time Series Forecasting

2. GluonTS: Probabilistic and neural time series modeling in python;Alexandrov Alexander;Journal of Machine Learning Research,2020

3. Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. 2013. Online learning for time series prediction. In Proceedings of the 26th Annual Conference on Learning Theory.Shai Shalev-Shwartz and Ingo Steinwart (Eds.), Vol. 30. PMLR, Princeton, NJ, 172–184. Retrieved from https://proceedings.mlr.press/v30/Anava13.html.

4. Shaojie Bai J. Zico Kolter and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271. Retrieved from https://arxiv.org/abs/1803.01271.

5. Automatic neural network modeling for univariate time series

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3